Kernel Sections of Multi-valued Processes with Application to the Nonlinear Reaction-diffusion Equations in Unbounded Domains

نویسندگان

  • YEJUAN WANG
  • SHENGFAN ZHOU
چکیده

First, we introduce the concept of pullback ω-limit compactness for multivalued processes, as an extension of the similar concept in the autonomous and nonautonomous framework. Next, we present the necessary and sufficient conditions (pullback dissipativeness and pullback ω-limit compactness) for the existence of a nonempty local bounded kernel (kernel sections are all compact, invariant and pullback attracting) of an infinite dimensional multi-valued process. In addition, we prove a result ensuring the existence of a uniform attractor and the uniform forward attraction of the inflated kernel sections of a family of multi-valued processes under the general assumptions of point dissipativeness and uniform ω-limit compactness. Finally, we illustrate the abstract theory with a nonlinear reaction-diffusion model in an unbounded domain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains

At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.

متن کامل

Pullback Attractors for Reaction-diffusion Equations in Some Unbounded Domains with an H-valued Non-autonomous Forcing Term and without Uniqueness of Solutions

The existence of a pullback attractor for a reaction-diffusion equations in an unbounded domain containing a non-autonomous forcing term taking values in the space H, and with a continuous nonlinearity which does not ensure uniqueness of solutions, is proved in this paper. The theory of set-valued non-autonomous dynamical systems is applied to the problem. Dedicated to Peter E. Kloeden on his 6...

متن کامل

SOLVING SINGULAR ODES IN UNBOUNDED DOMAINS WITH SINC-COLLOCATION METHOD

Spectral approximations for ODEs in unbounded domains have only received limited attention. In many applicable problems, singular initial value problems arise. In solving these problems, most of numerical methods have difficulties and often could not pass the singular point successfully. In this paper, we apply the sinc-collocation method for solving singular initial value problems. The ability...

متن کامل

Solving multi-order fractional differential equations by reproducing kernel Hilbert space method

In this paper we propose a relatively new semi-analytical technique to approximate the solution of nonlinear multi-order fractional differential equations (FDEs). We present some results concerning to the uniqueness of solution of nonlinear multi-order FDEs and discuss the existence of solution for nonlinear multi-order FDEs in reproducing kernel Hilbert space (RKHS). We further give an error a...

متن کامل

Stochastic differential inclusions of semimonotone type in Hilbert spaces

In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009